Robust Relevance-Based Language Models
نویسنده
چکیده
We propose a new robust relevance model that can be applied to both pseudo feedback and true relevance feedback in the language-modeling framework for document retrieval. There are three main differences between our new relevance model and the Lavrenko-Croft relevance model. The proposed model brings back the original query into the relevance model by treating it as a short, special document, in addition to a number of top ranked documents returned from the first round retrieval for pseudo feedback, or a number of relevant documents for true relevance feedback. Second, instead of using a uniform prior as in the original relevance model, documents are assigned with different priors according to their lengths (in terms) and ranks in the first round retrieval. Third, the probability of a term in the relevance model is further adjusted by its probability in a background language model. In both cases, we have compared the performance of our model to that of the two baselines: the original relevance model and a linear combination model. Our experimental results show that the proposed new model outperforms both of the two baselines in terms of mean average precision.
منابع مشابه
Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملEnhancing Relevance Models with Adaptive Passage Retrieval
Passage retrieval and pseudo relevance feedback/query expansion have been reported as two effective means for improving document retrieval in literature. Relevance models, while improving retrieval in most cases, hurts performance on some heterogeneous collections. Previous research has shown that combining passage-level evidence with pseudo relevance feedback brings added benefits. In this pap...
متن کاملOffline Language-free Writer Identification based on Speeded-up Robust Features
This article proposes offline language-free writer identification based on speeded-up robust features (SURF), goes through training, enrollment, and identification stages. In all stages, an isotropic Box filter is first used to segment the handwritten text image into word regions (WRs). Then, the SURF descriptors (SUDs) of word region and the corresponding scales and orientations (SOs) are extr...
متن کاملImproving the Robustness of Relevance-Based Language Models
We propose a new robust relevance model that can be applied to both pseudo feedback and true relevance feedback in the language-modeling framework for document retrieval. There are three main differences between our new relevance model and the Lavrenko-Croft relevance model. First, a query is treated as a short, special document and included in approximating a relevance model, in addition to a ...
متن کاملA new robust relevance model in the language model framework
In this paper, a new robust relevance model is proposed that can be applied to both pseudo and true relevance feedback in the language-modeling framework for document retrieval. There are at least three main differences between our new relevance model and other relevance models. The proposed model brings back the original query into the relevance model by treating it as a short, special documen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006